Module I

System Life Cycle

- Algorithms
- Performance Analysis
 - o Space Complexity
 - o Time Complexity,
- Asymptotic Notation
- Complexity Calculation of Simple Algorithms

• Algorithm:

- o An algorithm is a finite set of instructions that accomplishes a particular task.
- o It is a step by step procedure to solve the problem.
- o It is the simplest representation of the program in our own language.
- o An algorithm can be abstract or quite detailed.
- It is not dependent on any programming language, so it is easy to understand for anyone even without programming knowledge.
- o Every step in an algorithm has its own logical sequence so it is easy to debug.
- o Algorithm does not follow any rules.

• Properties of an Algorithm

- o **Input:** Zero or more inputs are externally supplied.
- o **Output:** At least one output is produced.
- o **Definiteness:** Each instruction is clear and unambiguous.
 - "add 6 or 7 to x", "compute 5/0" etc. are not permitted.
- o **Finiteness:** The algorithm terminates after a finite number of steps.
- **Effectiveness:** Every instruction must be very basic so that it can be carried out by a person using only pencil and paper in a finite amount of time. It also must be feasible.

Computational Procedures

- o Algorithms those are definite and effective.
- o Example: Operating system of a digital computer. (When no jobs are available, it does not terminate but continues in a waiting state until a new job is entered.)

Pseudo code:

- o Pseudo code is an implementation of an algorithm
- o It is a more formal representation than an algorithm
- o Each step is very closer to the actual programming language
- Acts as a bridge between the program and the algorithm.
- o Don't make the pseudo code abstract.
- o Don't be too generalized
- The main goal of a pseudo code is to explain what exactly each line of a program should do, hence making the code construction phase easier for the programmer.
- Also works as a rough documentation, so the program of one developer can be understood
 easily when a pseudo code is written out. In industries, the approach of documentation is
 essential. And that's where a pseudo-code proves vital.

Rules:

- An identifier begins with a letter
- Blocks are indicated with matching braces: { and }
- Assignment operator: =
- Mathematical Operators: +,-,*,/,^,%
- Boolean values: true, false.

```
Three logical operators: and, or, not
Relational operators: <, \leq, >, \geq,==, \neq
Array indices start at zero.
if statement has the following forms:
  if <condition> then <statement-1>
  if <condition> then <statement-1> else <statement-2>
The while loop takes the following form
  while < condition > do
         <statements>
A repeat-until statement is constructed as follows
  repeat
         <statement 1>
         <statement n>
  until <condition>
The general form of a for loop is
  for variable=value1 to value2 step s do
          <statement 1>
         <statement n>
break statement is used to exit from innermost loop.
return statement is used to exit from loops and functions
case statement has the following form:
  case
  {
         :<condition 1>: <statements>
          :<condition n>: <statements>
         :else: <statements>
An algorithm consists of a heading and a body.
         Algorithm Name (<parameterlist>)
```

- **Program:** It is the expression of an algorithm in a programming language
- Recursive Algorithms
 - A recursive function is a function that is defined in terms of itself.
 - An algorithm is said to be recursive if the same algorithm is invoked in the body.

Body of the algorithm

Two types of recursive algorithms

{

}

- o **Direct Recursion**: An algorithm that calls itself is direct recursive.
- o **Indirect Recursion**: Algorithm A is said to be indirect recursive if it calls another algorithm which in turn calls A.

• Performance Analysis

- When we have more than one algorithm to solve a problem, we need to select the best one. Performance analysis helps us to select the best algorithm from multiple algorithms to solve a problem.
- Performance analysis depends on **Space Complexity** and **Time Complexity**

• Space Complexity

- The space complexity of an algorithm is the amount of memory it needs to run to completion
- Space Complexity = Fixed Part + Variable Part

$$S(P) = c + S_P$$
, Where P is any algorithm

- A fixed part:
 - It is independent of the characteristics of the inputs and outputs.
 - Eg:
 - o Instruction space(i.e., space for the code)
 - o space for simple variables and fixed-size component variables
 - space for constants
- o A variable part:
 - It is dependent on the characteristics of the inputs and outputs.
 - Eg:
 - Space needed by component variables whose size is dependent on the particular problem instance being solved
 - o Space needed by referenced variables
 - Recursion stack space.

• Time Complexity

- The time complexity of an algorithm is the amount of computer time it needs to run to completion. Compilation time is excluded.
- Time Complexity = Frequency Count * Time for Executing one Statement
- Frequency Count → Number of times a particular statement will execute
- Eg1: Find the time and space complexity of matrix addition algorithm

	Step/Execution	Frequency Count	Total Frequency Count
Algorithm Sum(A,n)	0	0	0
{	0	0	0
s=0	1	1	1
for i=0 to n-1 do	1	n+1	n+1
S=s+A[i]	1	n	n
return s	1	1	1
}	0	0	0
			2n +3

Time Complexity = 2n + 3

Space Complexity = Space for parameters and Space for local variables

 $A[] \rightarrow n \qquad n \rightarrow 1 \qquad s \rightarrow 1 \qquad i \rightarrow 1$

Space complexity = n + 3

• Eg2: Find the time and space complexity of matrix addition algorithm

	Step/Execution	Frequency Count	Total Frequency Count
Algorithm mAdd(A,B,C,m,n)	0	0	0
{	0	0	0
for i=0 to m-1 do	1	m+1	m+1
for j=0 to n-1 do	1	m(n+1)	mn+m
C[i,j] := A[i,j] + B[i,j];	1	mn	mn
}	0	0	0
			2mn + 2m +1

Time Complexity = 2mn + 2m + 1

Space Complexity = Space for parameters and Space for local variables $m \rightarrow 1$ $n \rightarrow 1$ $a[] \rightarrow mn$ $b[] \rightarrow mn$ $c[] \rightarrow mn$ $i \rightarrow 1$ $j \rightarrow 1$ Space complexity = 3mn + 4

• Eg3: Find the time and space complexity of recursive sum algorithm

	Step/Execution	Frequency Count		Total Frequency Count		
		n≤0	n>0	n≤0	n>0	
Algorithm RSum(A,n)	0	0	0	0	0	
{	0	0	0	0	0	
if $n \le 0$ then	1	1	1	1	1	
return 0	1	1	0	1	0	
Else	0	0	0	0	0	
return $A[n] + RSum(A,n-1)$	1 + T(n-1)	0	1	0	1 + T(n-1)	
}	0	0	0	0	0	
	•	•	•	2	2 + T(n-1)	

Space Complexity = Space for Stack

= Space for parameters + Space for local variables + Space for return address

For each recursive call the amount of stack required is 3

Space for parameters: $A \rightarrow 1$ $n \rightarrow 1$ Space for local variables: No local variables

Space for return address: 1 Total number of recursive call = n+1

Space complexity = 3(n+1)

• Best Case, Worst Case and Average Case Complexity

- In certain case we cannot find the exact value of frequency count. In this case we have 3 types of frequency counts
 - o Best Case: It is the minimum number of steps that can be executed for a given parameter
 - o Worst Case: It is the maximum number of steps that can be executed for a given parameter
 - o Average Case: It is the average number of steps that can be executed for a given parameter

4

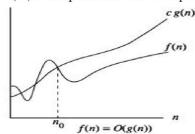
- Eg: Linear Search
 - o Best Case: Search data will be in the first location of the array.
 - o Worst Case: Search data does not exist in the array
 - $\circ\quad$ Average Case: Search data is in the middle of the array.

	Best Case			Worst Case			Average Case		
	S/E	FC	TFC	S/E	FC	TFC	S/E	FC	TFC
Algorithm Search(a,n,x)	0	0	0	0	0	0	0	0	0
{	0	0	0	0	0	0	0	0	0
for i:=1 to n do	1	1	1	1	n+1	n+1	1	n/2	n/2
if $a[i] ==x$ then	1	1	1	1	n	n	1	n/2	n/2
return i;	1	1	1	1	0	0	1	1	1
return -1;	1	0	0	1	1	1	1	0	0
}	0	0	0	0	0	0	0	0	0
			3			2n + 2			n+1

Best Case Complexity = 3
Worst Case Complexity = 2n + 2
Average Case Complexity= n+1

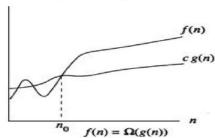
• Asymptotic Notations

- It is the mathematical notations to represent frequency count. 5 types of asymptotic notations
 - o Big Oh (O)
 - The function f(n) = O(g(n)) iff there exists 2 positive constants c and n_0 such that $0 \le f(n) \le c$ g(n) for all $n \ge n_0$
 - It is the measure of longest amount of time taken by an algorithm(Worst case).
 - It is asymptotically tight upper bound
 - O(1): Computational time is constant
 - O(n): Computational time is linear
 - $O(n^2)$: Computational time is quadratic
 - $O(n^3)$: Computational time is cubic
 - $O(2^n)$: Computational time is exponential



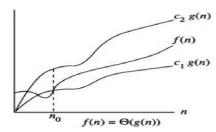
Omega (Ω)

- The function $f(n) = \Omega$ (g(n)) iff there exists 2 positive constant c and n_0 such that $f(n) \ge c$ g(n) ≥ 0 for all $n \ge n_0$
- It is the measure of smallest amount of time taken by an algorithm(Best case).
- It is asymptotically tight lower bound



Theta (θ)

- The function $f(n) = \Theta(g(n))$ iff there exists 3 positive constants c_1 , c_2 and n_0 such that $0 \le c_1$ $g(n) \le f(n) \le c_2$ g(n) for all $n \ge n_0$
- It is the measure of average amount of time taken by an algorithm(Average case).



o Little Oh (o)

- The function f(n) = o(g(n)) iff for any positive constant c>0, there exists a constant $n_0>0$ such that $0 \le f(n) < c g(n)$ for all $n \ge n_0$
- It is asymptotically loose upper bound

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

g(n) becomes arbitrarily large relative to f(n) as n approaches infinity

Little Omega (ω)

- The function $f(n) = \omega(g(n))$ iff for any positive constant c>0, there exists a constant $n_0>0$ such that f(n) > c $g(n) \ge 0$ for all $n \ge n_0$
- It is asymptotically loose lower bound

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

f(n) becomes arbitrarily large relative to g(n) as n approaches infinity

Examples:

- 1. Find the O notation of the following functions
 - a) f(n) = 3n + 2

$$3n + 2 \le 4 n$$
 for all $n \ge 2$
Here $f(n) = 3n + 2$ $g(n) = n$ $c = 4$ $n_0 = 2$
Therefore $3n + 2 = \mathbf{O}(\mathbf{n})$

b) $f(n) = 4n^3 + 2n + 3$

$$4n^3 + 2n + 3 \le 5 n^3$$
 for all $n \ge 2$
Here $f(n) = 4n^3 + 2n + 3$ $g(n) = n^3$ $c = 5$
Therefore $4n^3 + 2n + 3 = \mathbf{O}(\mathbf{n}^3)$

c) $f(n) = 2^{n+1}$

$$\begin{array}{lll} 2^{n+1} \leq 2 \ 2^n & \text{for all } n \!\! \geq \!\! 1 \\ \text{Here } f(n) \!\! = 2^{n+1} & g(n) \!\! = 2^n & c \!\! = \!\! 2 \\ \text{Therefore} & 2^{n+1} = \mathbf{O}(\mathbf{2}^n) & \end{array}$$

d) $f(n) = 2^n + 6n^2 + 3n$

$$2^{n} + 6n^{2} + 3n \le 7 \ 2^{n}$$
 for all $n \ge 5$
Here $f(n) = 2^{n} + 6n^{2} + 3n$ $g(n) = 2^{n}$ $c = 7$ $n_{0} = 5$
Therefore $2^{n} + 6n^{2} + 3n = \mathbf{O}(2^{n})$

- e) $f(n) = 10n^2 + 7$
- f) $f(n) = 5n^3 + n^2 + 6n + 2$
- g) $f(n) = 6n^2 + 3n + 2$
- h) f(n) = 100n + 6

2. Is
$$2^{2n} = O(2^n)$$
?

$$2^{2n} \le c 2^n$$

$$2^n < 0$$

There is no value for c and n_0 that can make this true.

Therefore
$$2^{2n} := \mathbf{O}(2^n)$$

$$\begin{array}{ll} 3. & \text{Is } 2^{n+1} = O(2^n)? \\ & 2^{n+1} \leq c \ 2^n \\ & 2x2^n \leq c \ 2^n \\ & 2 \leq c \\ & 2^{n+1} \leq c \ 2^n \ \text{ is True if } c{=}2 \ \text{and } n{\geq}1. \\ & \text{Therefore} \end{array}$$

4. Find the Ω notation of the following functions

a)
$$f(n) = 27 n^2 + 16n + 25$$

 $27 n^2 + 16n + 25 \ge 27 n^2$ for all $n \ge 1$
Here $c=27$ $n_0=1$ $g(n)=n^2$
 $27 n^2 + 16n + 25 = \Omega(\mathbf{n}^2)$
b) $f(n) = 5 n^3 + n^2 + 3n + 2$
 $5 n^3 + n^2 + 3n + 2 \ge 5 n^3$ for all $n \ge 1$
Here $c=5$ $n_0=1$ $g(n)=n^3$
 $5 n^3 + n^2 + 3n + 2 = \Omega(\mathbf{n}^3)$
c) $f(n) = 3^n + 6n^2 + 3n$
 $3^n + 6n^2 + 3n \ge 5.3^n$ for all $n \ge 1$
Here $c=5$ $n_0=1$ $g(n)=3^n$
 $3^n + 6n^2 + 3n \ge \Omega(\mathbf{3}^n)$
d) $f(n) = 42^n + 3n$
e) $f(n) = 3n + 30$
f) $f(n) = 10 n^2 + 4n + 2$

5. Find the Θ notation of the following functions

a)
$$f(n) = 3n + 2$$

 $3n + 2 \le 4 \text{ n}$ for all $n \ge 2$
 $3n + 2 = O(n)$
 $3n + 2 \ge 3 \text{ n}$ for all $n \ge 1$
 $3n + 2 = O(n)$
b) $f(n) = 3 2^n + 4n^2 + 5n + 2$
 $3x2^n + 4n^2 + 5n + 2 \le 10x2^n$ for all $n \ge 1$
 $3x2^n + 4n^2 + 5n + 2 = O(2^n)$
 $3x2^n + 4n^2 + 5n + 2 = O(2^n)$
 $3x2^n + 4n^2 + 5n + 2 = O(2^n)$
 $3x2^n + 4n^2 + 5n + 2 = O(2^n)$
 $3x2^n + 4n^2 + 5n + 2 = O(2^n)$
 $3x2^n + 4n^2 + 5n + 2 = O(2^n)$
 $3x2^n + 4n^2 + 5n + 2 = O(2^n)$
 $3x2^n + 4n^2 + 5n + 2 = O(2^n)$
c) $f(n) = 2n^2 + 16$
d) $f(n) = 27n^2 + 16$

• Common Complexity Functions

- Constant Time
 - \circ An algorithm is said to be constant time if the value of f(n) is bounded by a value that does not depend on the size of input.
 - Computational time is constant
 - o Eg: O(1)

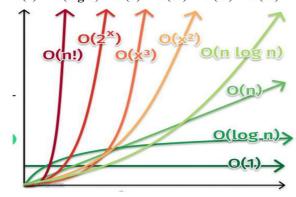
- Logarithmic Time
 - An algorithm is said to be logarithmic time if $f(n) = O(\log n)$
- Linear Time
 - o If f(n) = O(n), then the algorithm is said to be linear time.
- Quadratic Time
 - If $f(n) = O(n^2)$, then the algorithm is said to be quadratic time.
- Polynomial Time
 - o If $f(n) = O(n^k)$, then the algorithm is said to be polynomial time.
- Exponential Time
 - \circ If $f(n) = O(2^n)$, then the algorithm is said to be exponential time.
- Factorial Time
 - \circ If f(n) = O(n!), then the algorithm is said to be factorial time

• Running Time Comparison (Order of Growth)

- Logarithmic functions are very slow
- Exponential functions and factorial functions are very fast growing

n	log n	n	n log n	n^2	n^3	2 ⁿ	n!
10	3.3	10	3.3 x 10	10^{2}	10^{3}	10^{3}	3.6×10^{60}
10^2	6.6	10^{2}	6.6×10^2	10^{4}	10^{6}	1.3×10^{30}	9.3 x 10 ¹⁵⁷
10^3	10	10^{3}	10×10^3	10^{6}	10 ⁹	•	
10 ⁴	13	10^{4}	13 x 10 ⁴	10^{8}	10 ¹²		
10 ⁵	17	10 ⁵	17 x 10 ⁵	10 ¹⁰	10^{15}		•
10^{6}	20	10^{6}	20 x 10 ⁶	10 ¹²	10^{18}	•	•

$$O(1) \le O(\log n) \le O(n) \le O(n^k) \le O(2^n) \le O(n!)$$



Time Complexity Calculation: Examples

```
1. Find the time complexity of Binary Search
           Algorithm BinarySearch(A, low, high, search_data)
                   while low<=high do
                           mid = (low + high)/2
                           if A[mid]= search_data then
                                   flag = 1
                                   break
                           else if A[mid] > search_data then
                                   high=mid-1
                           else
                                   low=mid+1
                   if flag=0 then
                           Print "Search data not found"
                   else
                           Print "Search_data found at index " mid
           }
```

Best Case Time Complexity of Binary Search

- The search data is at the middle index.
- So total number of iterations required is 1
- Therefore, Time complexity = O(1)

Worst Case Time Complexity of Binary Search

- Assume that length of the array is n
- At each iteration, the array is divided by half.
- At Iteration 1, Length of array = n
- At Iteration 2, Length of array = n/2
- At Iteration 3, Length of array = $(n/2)/2 = n/2^2$
- At Iteration k, Length of array = $n/2^{k-1}$
- After k divisions, the length of array becomes 1

```
n/2^{k-1} = 1
n = 2^{k-1}
```

Applying log function on both sides:

```
\log_2(n) = \log_2(2^{k-1})
\log_2(n) = (k-1) \log_2(2)
k = \log_2(n) + 1
```

• Hence, the time complexity = $O(log_2(n))$

Average case Time Complexity of Binary Search

- Total number of iterations required = $k/2 = (\log_2(n)+1)/2$
- Hence, the time complexity = $O(log_2(n))$
- 2. What is the time complexity of the following code

```
for(i=0; i<n; i++)
s=s+i;
```

Answer:

- The for loop will execute n+1 times. It is the most frequently executing statement.
- So the time complexity = n+1 = O(n)
- 3. What is the time complexity of the following code

```
for(i=0; i<n*n; i++)
s=s+i;
```

Answer:

- The for loop will execute n²+1 times. It is the most frequently executing statement.
- So the time complexity = $n^2 + 1 = O(n^2)$
- 4. What is the time complexity of the following code

Answer:

- o The while loop will execute log n times.
- So the time complexity = $\log n = O(\log n)$
- 5. What is the time complexity of the following code

```
s=0
for(i=0; i<m; i++)
for(j=0; j<n;j++)
s=s+i*j;
```

Answer:

- o The outer for loop will successfully execute m times
- o For each successful case of outer for loop, the inner loop will successfully execute n times
- So the time complexity = m n = O(mn)
- 6. Calculate the frequency count of the statement x=x+1

```
for(i=1; i\leq=n; i++)
for(j=1; j\leq=n; j=j*2)
x=x+1;
```

Answer:

- o The outer for loop will successfully execute n times
- o For each successful case of outer for loop, the inner loop will successfully execute log n times
- o So the frequency count of x=x+1 statement is $n \log n$
- 7. Calculate the frequency count of the statement j=j*2

Answer:

- o The outer while loop will successfully execute n times
- o For each successful case of outer while loop, the inner loop will successfully execute log n times
- So the frequency count of j=j*2 statement is $n \log n = O(n \log n)$
- 8. What is the time complexity of the following code

```
 s=0 \\ for(i=1; i \le n; i++) \\ for(j=1; j \le i; j++) \\ s=s+i*j;
```

Answer:

- When i=1, the inner loop will execute 1 time
- o When i=2, the inner loop will execute 2 time
- When i=n, the inner loop will execute n time
- So the innermost statement will execute 1+2+3+....+n = n(n+1)/2 times
- So the time complexity = $n(n+1)/2 = O(n^2)$
- 9. What is the time complexity of the following code

```
s=0

for(i=1; i \le n; i++)

for(j=i; j \le 0; j++)

s=s+i*j;
```

Answer:

- o The inner for loop will not execute at all. The frequency count of inner for loop is 0.
- The outer for loop will execute n times.
- So the time complexity = $\mathbf{n} = \mathbf{O}(\mathbf{n})$
- 10. Calculate the frequency count of the statement1

```
for(i=k; i<n; i=i*m)
Statement1;
```

Answer:

- The for loop will successfully execute $[\log_m (n/k)]$ times
- So the frequency count of statement 1 is $\lceil \log_m(n/k) \rceil = O(\lceil \log_m(n/k) \rceil)$
- 11. Calculate the frequency count of the statement1

```
for(i=k; i<=n; i=i*m)
Statement1;
```

Answer:

- o The for loop will successfully execute $\lfloor \log_m (n/k) + 1 \rfloor$ times
- So the frequency count of statement 1 is $[\log_m (n/k) + 1] = O([\log_m (n/k)])$
- 12. What is the time complexity of the following code

```
 switch(key) \\ \{ \\ case 1: \ for(i=0;i < n;i++) \\ s = s + A[i] \\ break; \\ case 2: \ for(i=0;i < n;i++) \\ for(j=0;j < n;j++) \\ s = s + B[i][j] \\ break; \}
```

Answer:

- Case 1 complexity=O(n)
 Case 2 complexity=O(n²)
 The overall complexity = O(n²)

12