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Module I

e System Life Cycle
e Algorithms
e Performance Analysis

O
o

Space Complexity
Time Complexity,

e Asymptotic Notation
o Complexity Calculation of Simple Algorithms

e Algorithm:

o

O O O O

o

o

An algorithm is a finite set of instructions that accomplishes a particular task.

It is a step by step procedure to solve the problem.

It is the simplest representation of the program in our own language.

An algorithm can be abstract or quite detailed.

It is not dependent on any programming language, so it is easy to understand for anyone even
without programming knowledge.

Every step in an algorithm has its own logical sequence so it is easy to debug.

Algorithm does not follow any rules.

e Properties of an Algorithm

O
O
O

O
o

Input: Zero or more inputs are externally supplied.
Output: At least one output is produced.
Definiteness: Each instruction is clear and unambiguous.
= “add 6 or 7 to x”, “compute 5/0” etc. are not permitted.
Finiteness: The algorithm terminates after a finite number of steps.
Effectiveness: Every instruction must be very basic so that it can be carried out by a person using only
pencil and paper in a finite amount of time. It also must be feasible.

e Computational Procedures

o

o

Algorithms those are definite and effective.

Example: Operating system of a digital computer. (When no jobs are available, it does not terminate
but continues in a waiting state until a new job is entered.)

e Pseudo code:

o

O O O O O O

O

Pseudo code is an implementation of an algorithm
It is a more formal representation than an algorithm
Each step is very closer to the actual programming language
Acts as a bridge between the program and the algorithm.
Don’t make the pseudo code abstract.
Don’t be too generalized
The main goal of a pseudo code is to explain what exactly each line of a program should do,
hence making the code construction phase easier for the programmer.
Also works as a rough documentation, so the program of one developer can be understood
easily when a pseudo code is written out. In industries, the approach of documentation is
essential. And that's where a pseudo-code proves vital.
Rules:
* An identifier begins with a letter
=  Blocks are indicated with matching braces: { and }
* Assignment operator: =
= Mathematical Operators: +,-,*,/,",%
=  Boolean values: true, false.
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» Three logical operators: and, or, not
» Relational operators: <, <, > > == #
* Array indices start at zero.
= if statement has the following forms:
if <condition> then <statement-1>
if <condition> then <statement-1> else <statement-2>
» The while loop takes the following form
while < condition > do

{
}

» A repeat-until statement is constructed as follows
repeat

<statements>

<statement 1>

<statement n>
until <condition>
* The general form of a for loop is
for variable=valuel to value2 step s do

{

<statement 1>

<statement n>

}

* break statement is used to exit from innermost loop.

* return statement is used to exit from loops and functions
= case statement has the following form:

case

{
:<condition 1>: <statements>
:<condition n>: <statements>
:else: <statements>

}

*  An algorithm consists of a heading and a body.
Algorithm Name (<parameterlist>)

{
}

Body of the algorithm

e Program: It is the expression of an algorithm in a programming language
e Recursive Algorithms
e A recursive function is a function that is defined in terms of itself.
e An algorithm is said to be recursive if the same algorithm is invoked in the body.
e Two types of recursive algorithms
o Direct Recursion: An algorithm that calls itself is direct recursive.
o Indirect Recursion: Algorithm A is said to be indirect recursive if it calls another algorithm which
in turn calls A.
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Performance Analysis

CS201 — Data Structures(KTU)

e When we have more than one algorithm to solve a problem, we need to select the best one. Performance
analysis helps us to select the best algorithm from multiple algorithms to solve a problem.

e Performance analysis depends on Space Complexity and Time Complexity

e Space Complexity

e The space complexity of an algorithm is the amount of memory it needs to run to completion
e Space Complexity = Fixed Part + Variable Part

S(P) =c+ Sp, Where P is any algorithm

o A fixed part:

= [tis independent of the characteristics of the inputs and outputs.

= Eg

o Instruction space(i.e., space for the code)
o space for simple variables and fixed-size component variables

o space for constants

o A variable part:

= Jtis dependent on the characteristics of the inputs and outputs.

= Eg:

o Space needed by component variables whose size is dependent on the particular
problem instance being solved

o Space needed by referenced variables

o Recursion stack space.

¢ Time Complexity

e The time complexity of an algorithm is the amount of computer time it needs to run to completion.

Compilation time is excluded.

¢ Time Complexity = Frequency Count * Time for Executing one Statement
e Frequency Count > Number of times a particular statement will execute

e Egl: Find the time and space complexity of matrix addition algorithm

Step/Execution | Frequency Count | Total Frequency Count

Algorithm Sum(A,n) 0 0 0
{ 0 0 0
s=0 1 1 1

for i=0 to n-1 do 1 n+l1 n+1
S=s+Ali] 1 n n
return s 1 1 1
} 0 0 0

2n +3

Time Complexity = 2n + 3

Space Complexity = Space for parameters and Space for local variables

A[]=n n>1
Space complexity =n + 3

s2>1

i1

e Eg2: Find the time and space complexity of matrix addition algorithm

Step/Execution | Frequency Count | Total Frequency Count

Algorithm mAdd(A,B,C,m,n) 0 0 0
{ 0 0 0

for i=0 to m-1 do 1 m+1 m+1

for j=0 to n-1 do 1 m(n+1) mn+m

Cli,j] := Ali,j] + B[i,j]; 1 mn mn

} 0 0 0
2mn + 2m +1
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Time Complexity = 2mn + 2m + 1

CS201 — Data Structures(KTU)

Space Complexity = Space for parameters and Space for local variables

m=>1 n=>1 a[]2mn b[]=>mn c[]=”mn

Space complexity = 3mn + 4

i>1

i1

Eg3: Find the time and space complexity of recursive sum algorithm
Step/Execution | Frequency Count | Total Frequency Count
n<(0 n>0 n<0 n>0
Algorithm RSum(A,n) 0 0 0 0 0
{ 0 0 0 0 0
if n <0 then 1 1 1 1 1
return 0 1 1 0 1 0
Else 0 0 0 0 0
return A[n] + RSum(A,n-1) 1+ T(n-1) 0 1 0 1 + T(n-1)
} 0 0 0 0 0
2 2 + T(n-1)
Time Complexity = T(n) = 2 if n<=0

2 + T(n-1) Otherwise
T(n) =2+T(n-1)
=2 +2 + T(n-2)
=2+2+2+T(n-3)
=2x3 + T(n-3)

=2xn +T(n-n)
=2n+2

Space Complexity = Space for Stack

= Space for parameters + Space for local variables + Space for return address

For each recursive call the amount of stack required is 3
Space for parameters: A—>1 n>1
Space for local variables: No local variables
Space for return address: 1

Total number of recursive call = n+1

Space complexity = 3(n+1)

Best Case, Worst Case and Average Case Complexity

In certain case we cannot find the exact value of frequency count. In this case we have 3 types of

frequency counts

o Best Case : It is the minimum number of steps that can be executed for a given parameter
o Worst Case: It is the maximum number of steps that can be executed for a given parameter
o Average Case: It is the average number of steps that can be executed for a given parameter

Eg: Linear Search

o Best Case: Search data will be in the first location of the array.

o Worst Case: Search data does not exist in the array
o Average Case: Search data is in the middle of the array
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Best Case Worst Case Average Case
S/E | FC | TFC | SIE | FC | TFC | S/E | FC | TFC
Algorithm Search(a,n,x) 0 0 0 0 0 0 0 0 0
{ 0 0 0 0 0 0 0 0 0
for i:=1 to n do 1 1 1 1 n+1 n+1 1 n/2 n/2
if a[i] ==x then 1 1 1 1 n n 1 n/2 n/2
return i; 1 1 1 1 0 0 1 1 1
return -1; 1 0 0 1 1 1 1 0 0
} 0 0 0 0 0 0 0 0 0
3 2n+2 n+l
Best Case Complexity = 3
Worst Case Complexity = 2n +2
Average Case Complexity= n+1

e Asymptotic Notations
e Itis the mathematical notations to represent frequency count. 5 types of asymptotic notations
o Big Oh (0)
o The function f(n) = O(g(n)) iff there exists 2 positive constants ¢ and n, such that
0 <f(n) <c g(n) forall n>n,
= Jtis the measure of longest amount of time taken by an algorithm(Worst case).
= [tis asymptotically tight upper bound
= O(1) : Computational time is constant
= O(n) : Computational time is linear
*  O(n’) : Computational time is quadratic
O Computational time is cubic
=  O(2") : Computational time is exponential

c gin)

"o fimy = Owgtn
o Omega (Q)
= The function f(n) = Q (g(n)) iff there exists 2 positive constant ¢ and ny such that
f(n) > ¢ g(n) > 0 for all n > n,
= [tis the measure of smallest amount of time taken by an algorithm(Best case).
= [tis asymptotically tight lower bound

Silm)

c gln)

o fm) = Qeginy
o Theta (O)
= The function f(n) = © (g(n)) iff there exists 3 positive constants ¢, ¢, and ng such that
0 <c; g(n) <f(n) <c, g(n) for all n>ny
= Jtis the measure of average amount of time taken by an algorithm(Average case).
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A ]
Sy

c, g{n)

]
n

o Fin) = B(g(n))

o Little Oh (o)
= The function f(n) = o(g(n)) iff for any positive constant c>0, there exists a constant ny>0 such
that 0 < f(n) < ¢ g(n) for all n > n,
= Jtis asymptotically loose upper bound
. f(n)
lim =—— =
n—o0 g(n)
g(n) becomes arbitrarily large relative to f(n) as n approaches infinity
o Little Omega (®)
»  The function f(n) = w(g(n)) iff for any positive constant ¢>0, there exists a constant ny,>0 such
that f(n) >c g(n) > 0 for all n > ny
= Jtis asymptotically loose lower bound
lim / (”,) = oo
n—o00 g( ,le)
f(n) becomes arbitrarily large relative to g(n) as n approaches infinity
Examples:
1. Find the O notation of the following functions
a) f(n)=3n+2
3n+2<4n forall n>2
Here f(n)=3n+ 2 g(n)=n c=4 ny=2
Therefore 3n +2=0(n)
b) f(n)=4n’+2n+3
4n’+2n+3<5n’  forall n>2
Here f(n)=4n> + 2n + 3 g(n)= n’ c=3 np=2
Therefore 4n® + 2n + 3= O(n3)
¢) f(n)=2""
il R for all n>1
Here f(n)= 2™" g(n)=2" c= ng=1
Therefore 2™ = 02"
d) f(n)=2"+6n’+3n
2"+6n°+3n<72" for all n>5
Here f(n)= 2" + 6n° + 3n g(n)=2" c=7 ny=>5
Therefore 2"+ 6n” + 3n = O(2")
e) f(n)=10n"+7
f) f(n)=5n+n’+6n+2
g) f(n)=6n"+3n+2
h) f(n)=100n+6
2. Is2™=002"?

2" <c2n
2" <c¢

There is no value for ¢ and n, that can make this true.

Therefore

2" 1= 02"
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3. Is2™'=002"?
211+l S c 2n
2x2" <c¢2"
2<c¢
2™ < ¢ 2" is True if c=2 and n>1.
Therefore 2™ = 02"

4. Find the Q notation of the following functions
a) f(n)=27n’+ 16n+25

27n%+ 16n+25>27n> foralln >1

Here c=27 np=1 gn)= n’
27 n* + 16n + 25 = Q(n?)
b) fm)=5n’+n’+3n+2

5nP+n®+3n+2>5n foralln >1

Here c=5 n=1 gn)= n’
50’ +n’ +3n+2=Q(n’)

¢) f(n)=3"+6n’+3n
3"+ 6n*+3n>53" foralln >1
Here c=5 ng=1 gn)=3"
3"+ 60 + 3n=0Q@3"

d) f(n)=42"+3n

e) f(n)=3n+30

f) f(n)=10n"+4n+2

5. Find the O notation of the following functions
a) f(n)=3n+2
3n+2<4n forall n>2

3n+ 2 =0(n)

3n+2>3n for all n>1
3n+2=Q(n)

3n<3n+2<4n for all n>2
3n+2=0()

b) f(n)=32"+4n*+5n+2
3x2"+4n° +5n+2<10x2"  forall n>1
3x2" +4n” + Sn+ 2 = 02"

3x2" +4n® + 5n + 2 > 3x2" for all n>1
3x2"+4n’*+5n+2=Q (2"

3x2"<3x2"+4n* +5n +2 <10 2" for all n>1

3x2" +4n” + 5Sn + 2 = O(2")
¢) fm)=2n*+16
d) f(n)=27n"+16

Common Complexity Functions
e Constant Time

CS201 - Data Structures(KTU)

o An algorithm is said to be constant time if the value of f(n) is bounded by a value that does not

depend on the size of input.
o Computational time is constant
o Eg:0()
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Logarithmic Time

o An algorithm is said to be logarithmic time if f(n) = O(log n)
Linear Time

o If f(n) = O(n), then the algorithm is said to be linear time .
Quadratic Time

o If f(n) = O(n®), then the algorithm is said to be quadratic time .
Polynomial Time

o If f(n) = O(n"), then the algorithm is said to be polynomial time .
Exponential Time

o If f(n) = O(2"), then the algorithm is said to be exponential time .
Factorial Time

o If f(n) = O(n!), then the algorithm is said to be factorial time

¢ Running Time Comparison (Order of Growth)

Logarithmic functions are very slow
Exponential functions and factorial functions are very fast growing

CS201 - Data Structures(KTU)

10° 10 10° 10 x 10° 10° 10°
10* 13 10* 13 x 10* 10 10"

10° 17 10° 17x10° | 10" | 10%

10° 20 10° 20x10° | 10 | 10"

n logn n nlogn n’ n’ 2" n!
10 3.3 10 3.3x 10 10° 10° 10° 3.6 x 10
10° 6.6 10° 6.6x 10> | 10* 10° 1.3x 10* | 9.3x 10"

0(1) < O(log n) < O(n) < O(n*) < 02" < O(n!)

T T

o(2») )
o(n!) o(x3) 2

—~—___o(logn)>

of1)

N
7
>
¢
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e Time Complexity Calculation: Examples
1. Find the time complexity of Binary Search
Algorithm BinarySearch(A, low, high, search_data)
{
flag=0
while low<=high do
{
mid = (low + high)/2
if A|mid]= search_data then
{
flag =1
break
}
else if A[mid] > search_data then
high=mid-1
else
low=mid+1

}
if flag=0 then
Print “Search data not found”
else
Print “Search_data found at index “ mid

}

o Best Case Time Complexity of Binary Search
= The search data is at the middle index.
= So total number of iterations required is 1
»  Therefore, Time complexity = O(1)

o Worst Case Time Complexity of Binary Search

= Assume that length of the array is n

= At each iteration, the array is divided by half.

= At lteration 1, Length of array = n

= At Iteration 2, Length of array = n2

= At lteration 3, Length of array = (n2)2 = n2*

= At lIteration k, Length of array = n2""

= After k divisions, the length of array becomes 1
n/zk-l — 1
n= 2k-1

=  Applying log function on both sides:
log, (n) = log, (2"
logs (n) = (k-1) log, (2)
k=1log, (n) +1
= Hence, the time complexity = O( log, (n) )

o Average case Time Complexity of Binary Search
= Total number of iterations required = k/2 = (log, (n)+1)/2
= Hence, the time complexity = O( log, (n) )

2. What is the time complexity of the following code
for(i=0; i<n; i++)
S=S+i;

CS201 — Data Structures(KTU)
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Answer:

o The for loop will execute n+1 times. It is the most frequently executing statement.
o So the time complexity = n+1 = O(n)

3. What is the time complexity of the following code
for(i=0; i<n*n; i++)
S=S+i;
Answer:
o The for loop will execute n’+1 times. It is the most frequently executing statement.
o So the time complexity = n’+1 = O(n®)

4. What is the time complexity of the following code
i=1
while(i<=n)
{
S=s+i;
1=1%2;
}
Answer:
o The while loop will execute log n times.
o So the time complexity = log n = O(log n)

5. What is the time complexity of the following code
s=0
for(i=0; i<m; i++)
for(j=0; j<nij++)
s=s+i%];

Answer:

o The outer for loop will successfully execute m times

o For each successful case of outer for loop, the inner loop will successfully execute n times
o So the time complexity = m n = O(mn)

6. Calculate the frequency count of the statement x=x+1
for(i=1; i<=n; i++)
for(j=1; j<=n; j=j*2)
X=x+1;
Answer:
o The outer for loop will successfully execute n times
o For each successful case of outer for loop, the inner loop will successfully execute log n times
o So the frequency count of x=x+1 statement is n log n

7. Calculate the frequency count of the statement j=j*2

i=1;
while(i<=n)
{
=1
while(j<=n)
{
=*2;
}
i=i+l1;
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10.

11.

12.

CS201 - Data Structures(KTU)
Answer:
o The outer while loop will successfully execute n times
o For each successful case of outer while loop, the inner loop will successfully execute log n times
o So the frequency count of j=j*2 statement is n log n = O(n log n)

What is the time complexity of the following code

s=0

for(i=1; i<=n; i++)

for(j=1; j<=i; j++)
S=s+i*j;

Answer:
o When i=1, the inner loop will execute 1 time
o When i=2, the inner loop will execute 2 time
o When i=n, the inner loop will execute n time
o So the innermost statement will execute 1+2+3+.....+ n =n(n+1)/2 times
o So the time complexity = n(n+1)/2 = O(n’%)

What is the time complexity of the following code
s=0
for(i=1; i<=n; i++)
for(j=i; j<0; j++)
S=s+i*j;
Answer:
o The inner for loop will not execute at all. The frequency count of inner for loop is 0.
o The outer for loop will execute n times.
o So the time complexity = n = O(n)

Calculate the frequency count of the statement]
for(i=k; i<n; i=i*m)
Statement1;
Answer:
o The for loop will successfully execute [log,, (n/k)] times
o So the frequency count of statementl is [logm (0/K)] = O([logm (0/K)])

Calculate the frequency count of the statement1
for(i=k; i<=n; i=i*m)
Statement1;
Answer:
o The for loop will successfully execute | log,, (n/k) + 1 | times

o So the frequency count of statementl is | logn (0/K) + 1 | = O(] log, (0/K) )

What is the time complexity of the following code
switch(key)
{
case 1: for(i=0;i<n;i++)
s=s+A[i]
break;
case 2: for(i=0;i<n;i++)
for(j=0;j<n;j++)
s=s+Bl[i][j]
break;
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Answer:
o Case 1 complexity=0(n)
o Case 2 complexity=0(n?)
o The overall complexity = O(n?)

CS201 - Data Structures(KTU)
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